# Taipei Municipal YangMing High School 

## Teacher Recruitment at 2024

## Paper and Pencil Test

Subject: Chemistry

This test consists of two parts: part I, single-choice questions (40 points); part II, shortanswer questions ( 60 points).

Part I. Single-choice questions (1-20), 2 points for each question.

1. For $\left[\mathrm{H}^{+}\right]=(8.0 \pm 0.4) \times 10^{-5} \mathrm{M}, \mathrm{pH}=4.10 \pm \mathrm{s}$. $\mathrm{s}=$ ?
(A) 0.01 (B) 0.02 (C) 0.03 (D) 0.04
2. What is the volume (in mL ) of $1.0 \mathrm{M} \mathrm{NaOH}(\mathrm{aq})$ that must be added to $1.0 \mathrm{M}, 60$ $\mathrm{mLHA}(\mathrm{aq})$ to make a buffer solution with $\mathrm{pH}=6.0 ? \quad \mathrm{pK}_{\mathrm{a}}=5.7$ for HA (A) 20 (B) 30 (C) 40 (D) 50
3. Ionization of water is an endothermic process with $\mathrm{pK} \mathrm{w}_{\mathrm{w}}=14.0$ at $25^{\circ} \mathrm{C}$. For pure water at $37^{\circ} \mathrm{C}$, which of the following relations is correct?
(A) $\mathrm{pK}_{\mathrm{w}}>14.0$ (B) $\mathrm{pH}=7.0$ (C) $\mathrm{pOH}>7.0$ (D) $\mathrm{pK}_{\mathrm{w}}=2 \mathrm{pH}$
4. For two monoprotic acids ( $\mathrm{HA}, \mathrm{HB}$ ) and their conjugate bases $\left(\mathrm{A}^{-}, \mathrm{B}^{-}\right)$, the following relations are known: $\mathrm{HA}+\mathrm{B}^{-} \rightleftharpoons \mathrm{A}^{-}+\mathrm{HB}, \mathrm{K}>1$ and $\mathrm{pK}\left(\mathrm{A}^{-}\right)<7.0$. Which of the following order of K 's is correct?
(A) $\mathrm{K}_{\mathrm{b}}\left(\mathrm{B}^{-}\right)>\mathrm{K}_{\mathrm{a}}(\mathrm{HB})>\mathrm{K}_{\mathrm{a}}(\mathrm{HA})>\mathrm{K}_{\mathrm{b}}\left(\mathrm{A}^{-}\right)$
(B) $\mathrm{K}_{\mathrm{b}}\left(\mathrm{A}^{-}\right)>\mathrm{K}_{\mathrm{b}}\left(\mathrm{B}^{-}\right)>\mathrm{K}_{\mathrm{a}}(\mathrm{HA})>\mathrm{K}_{\mathrm{a}}(\mathrm{HB})$
(C) $\mathrm{K}_{\mathrm{b}}\left(\mathrm{B}^{-}\right)>\mathrm{K}_{\mathrm{b}}\left(\mathrm{A}^{-}\right)>\mathrm{K}_{\mathrm{a}}(\mathrm{HA})>\mathrm{K}_{\mathrm{a}}(\mathrm{HB})$
(D) $\mathrm{K}_{\mathrm{b}}\left(\mathrm{B}^{-}\right)>\mathrm{K}_{\mathrm{a}}(\mathrm{HA})>\mathrm{K}_{\mathrm{b}}\left(\mathrm{A}^{-}\right)>\mathrm{K}_{\mathrm{a}}(\mathrm{HB})$
5. The solubility of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$ in water is 10000 times that of $\mathrm{Ag}_{2} \mathrm{CrO}_{4}(\mathrm{~s})$ in 0.020 $\mathrm{M} \mathrm{AgNO}_{3}(\mathrm{aq})$. What is the $\mathrm{K}_{\text {sp }}$ for $\mathrm{Ag}_{2} \mathrm{CrO}_{4}$ ?
(A) $2 \times 10^{-8}$
(B) $4 \times 10^{-10}$
(C) $1 \times 10^{-12}$ (D) $4 \times 10^{-12}$
6. Consider the concentration cell: $\mathrm{Cu}\left|\mathrm{Cu}^{2+}\left(5.0 \times 10^{-5} \mathrm{M}\right) \| \mathrm{Cu}^{2+}(0.50 \mathrm{M})\right| \mathrm{Cu}$. What is the cell potential (in volt) at $25^{\circ} \mathrm{C}$ ?
(A) 0.06 (
(B) 0.12 (C) 0.18
(D) 0.24
7. For the condensation of water vapor at 1 atm and $25^{\circ} \mathrm{C}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)\right)$, which of the following relations is correct?
(A) $\Delta$ G $<0$ (B) w $<0$
(C) $\Delta \mathrm{S}>0$ (D) $\mathrm{q}>0$
8. For an isothermal and reversible compression of an ideal gas, which of the following relations is correct?
(A) $\Delta \mathrm{H}<0$
(B) $\Delta \mathrm{G}=0$
(C) $q>0$
(D) $\Delta \mathrm{S}<0$
9. Adding $\mathrm{CH}_{4}(\mathrm{~g})$ into a fixed-volume flask containing $\mathrm{O}_{2}(\mathrm{~g})$ until the pressure is tripled, how many times its density will be? $\quad\left(d_{\text {final }} / \mathrm{d}_{\text {initial }}=\right.$ ?)

$$
\text { (A) } 2 \text { (B) } 3 \text { (C) } 4 \text { (D) } 6
$$

10. Which of the following elements has the lowest second ionization energy?
(A) B (B) C (C) $\mathrm{N}(\mathrm{D}) \mathrm{O}$
11. For $\mathrm{Ag}^{+}$ion in its ground state, what is the number of electrons that have $\mathrm{m}_{l}=0$ and $\mathrm{m}_{\mathrm{s}}=-1 / 2$ ? $\quad(\mathrm{Z}=47$ for Ag$)$
(A) 9 (B) 10 (C) 18 (D) 20
12. Which of the following compounds would have the largest melting point?
(A) NaCl
(B) $\mathrm{KCl}($
(C) MgO
(D) $\mathrm{MgCl}_{2}$
13. One mole of an ideal gas ( $\left.\mathrm{C}_{\mathrm{v}}=20 \mathrm{~J} \cdot \mathrm{~K}^{-1} \cdot \mathrm{~mol}^{-1}\right)$, initially at 1.0 atm and 300 K , absorbs 100 J of heat and performs 500 J of work in a certain process. What is the final temperature (in K ) of the gas?
(A) 280
(B) 290 (C) 300
(D) 320
14. Decomposition of $2.76 \mathrm{~g} \mathrm{M}_{2} \mathrm{CO}_{3}$ yields $1.88 \mathrm{~g} \mathrm{M}_{2} \mathrm{O}$. What is the atomic mass of M ? (A) 9 (B) 23 (C) 39 (D) 85
15. For a triprotic acid $\mathrm{H}_{3} \mathrm{~A}$ with $\mathrm{pK}_{1}=3.0, \mathrm{pK}_{2}=6.0$ and $\mathrm{pK}_{3}=9.0$, which of the following relations is correct?
(A) $\left[\mathrm{H}_{3} \mathrm{~A}\right]=\left[\mathrm{A}^{3-}\right]$ at $\mathrm{pH}=7.0$
(B) $\left[\mathrm{HA}^{2-}\right] /\left[\mathrm{A}^{3-}\right]=10$ at pH 7.0
(C) $\left[\mathrm{H}_{2} \mathrm{~A}^{-}\right]>\left[\mathrm{HA}^{2-}\right]$ at pH 6.5
(D) $\left[\mathrm{H}_{3} \mathrm{~A}\right]>\left[\mathrm{HA}^{2-}\right]$ at pH 5.0
16. Which of the following statements is correct?
(A) a saturated solution contains a high concentration of solute.
(B) the solubility of solids always increases with temperature.
(C) a saturated solution involves a dynamic equilibrium between the solid and its solution.
(D) a supersaturated solution involves a dynamic equilibrium between the solid and its solution.
17. Which operation will increase the quantity of product for the exothermic reaction: $2 \mathrm{SO}_{2}(\mathrm{~g})+\mathrm{O}_{2}(\mathrm{~g}) \rightleftharpoons 2 \mathrm{SO}_{3}(\mathrm{~g})$
(A) a decrease in volume of container
(B) an increase in temperature
(C) increasing $P$ by adding some argon
(D) adding a catalyst
18. Consider the equilibrium: $\mathrm{PCl}_{5}(\mathrm{~g}) \rightleftharpoons \mathrm{PCl}_{3}(\mathrm{~g})+\mathrm{Cl}_{2}(\mathrm{~g}), \mathrm{K}_{\mathrm{c}}=0.025$ at 400 K . If 0.5 mol of $\mathrm{PCl}_{5}$ is placed in a 1.0 L container at 400 K and is allowed to reach equilibrium, what is the total pressure (in atm) of the gases?
(A) 5 (B) 10 (C) 15 (D) 20
19. For an ideal gas, which of the following sets of variables has a linear relationship? (A) P vs. $1 / \mathrm{V}$ (B) V vs. T (C) PV vs. T (D) P/T vs. density
20. It took 2 min for $0.20 \mathrm{~L}^{2}$ of $\mathrm{H}_{2}$ to effuse through a pin hole. How long will it take (in $\mathrm{min})$ for $0.10 \mathrm{~L}^{2}$ of $\mathrm{O}_{2}$ to effuse under identical conditions?
(A) 2 (B) 4 (C) 8 (D) 16

Part II. Short-answer questions (21-26); 10 points for each question.
Question 26 must be answered in English; other questions can be answered in Chinese.
21. A certain liquid (X) has a normal boiling point of 353 K . The densities (in $\mathrm{g} / \mathrm{L}$ ) of the vapor X in equilibrium with its liquid at 300 K and 353 K are 0.50 and 2.7, respectively. Assume the vapor behaves ideally, answer the following questions.
(A) Find the molar mass of X. $3 \%$
(B) Find the vapor pressure of liquid X at 300 K . $2 \%$
(C) If the saturated vapor of X at 353 K in a 2.0 L glass flask is cooled to 300 K , what is the mass of $X$ that the will be condensed? $2 \%$
(D) If X is a hydrocarbon containing $92.3 \%$ carbon, what are the empirical formula and molecular formula of X ?
22. A battery is constructed from two half cells: $\mathrm{Zn} \mid \mathrm{Zn}^{2+}(1.0 \mathrm{M})$ and $\mathrm{Mn} \mid \mathrm{Mn}^{2+}(1.0 \mathrm{M})$; the volume of each electrolyte solution is 300 mL . The battery is allowed to discharge at a constant current of 9.65 amperes. Given that: $\mathrm{F}=96500 \mathrm{C} \cdot \mathrm{mol}^{-1} ; \mathrm{E}^{\circ}=-0.76 \mathrm{~V}$ for $\mathrm{Zn}^{2+} / \mathrm{Zn}$ and -1.18 V for $\mathrm{Mn}^{2+} / \mathrm{Mn}$. Answer the following questions.
(A) Indicate the anode, cathode, and direction of electron flow of the cell. $3 \%$
(B) Calculate the standard cell potential. $2 \%$
(C) The equilibrium constant of the cell reaction is $\mathrm{K} ; \log \mathrm{K}=$ ? $\quad 2 \%$
(D) Find $\left[\mathrm{Zn}^{2+}\right]$ after 10 min . of discharging. $3 \%$
23. One mole of an ideal gas $\left(\mathrm{C}_{\mathrm{v}}=2 \mathrm{R}\right)$, initially at X , undergoes three reversible steps of a cycle as shown below:

$$
\mathrm{X}(3 \mathrm{~atm}, 300 \mathrm{~K}) \xrightarrow{(1)} \mathrm{Y}(1 \mathrm{~atm}) \xrightarrow{(2)} \mathrm{Z}(0.5 \mathrm{~atm}) \xrightarrow{(3)} \mathrm{X}
$$

(1) isothermal; (2) isochoric (fixed V); (3) adiabatic

Answer the following questions. $\quad(\ln 3=1.1)$
(A) Find the temperature (T) at state Z. $2 \%$
(B) Find the work done (w) for step (3). $2 \%$
(C) Find the change in enthalpy ( $\Delta \mathrm{H}$ ) for step (2). $3 \%$
(D) Find the heat (q) involved in a cycle. $3 \%$
24. After people take the medicine $X$, it can be absorbed into the body through pathway $\mathrm{A} \rightarrow \mathrm{B}$ and enter the blood. Medicine in the blood can reduce its concentration through decomposition $(\mathrm{B} \rightarrow \mathrm{C})$ or excretion $(\mathrm{B} \rightarrow \mathrm{D})$, as shown in the figure below:


Assume that the process $\mathrm{A} \rightarrow \mathrm{B}$ is much faster than those of $\mathrm{B} \rightarrow \mathrm{C}$ and $\mathrm{B} \rightarrow \mathrm{D}$. Therefore, each time a medicine with a dose of $[\mathrm{X}]_{0}$ is taken, it can be regarded as immediately producing a concentration of $[\mathrm{X}]_{\mathrm{b}}(=0.020 \mathrm{mM})$ of X in the blood. Assume that $\mathrm{B} \rightarrow \mathrm{C}$ and $\mathrm{B} \rightarrow \mathrm{D}$ are both first-order processes, and their rate constants are $\mathrm{k}_{1}(=$ $0.075 \mathrm{~h}^{-1}$ ) and $\mathrm{k}_{2}\left(=0.025 \mathrm{~h}^{-1}\right)$, respectively. If a person takes the same dose $\left([\mathrm{X}]_{\mathrm{o}}\right)$ of the medicine every t hour, answer the following questions.
(A) Just after taking the medicine for the $\mathrm{n}^{\text {th }}$ time, its concentration in the blood is equal to $[\mathrm{P}]_{\mathrm{n}}$. Express $[\mathrm{P}]_{\mathrm{n}}$ as a function of $[\mathrm{X}]_{\mathrm{b}}, \mathrm{k}_{1}, \mathrm{k}_{2}$ and t .
(B) Continue to take the medicine every 6 hours for a long period of time $(\mathrm{n} \rightarrow \infty)$, calculate $[\mathrm{P}]_{\infty}$ (in mM )?
(C) Find the half-life of the medicine in the blood. 2\%
(D) What proportion of the decrease in medicine concentration in the blood is caused by decomposition?
25. Extraction and spectroscopic methods can be used to determine the dissociation constant $\left(\mathrm{K}_{\mathrm{a}}\right)$ of a monoprotic organic acid (HA) and its distribution coefficient $\left(\mathrm{K}_{\mathrm{d}}\right)$ between the organic phase and the aqueous phase. When extracting organic acids, it is assumed that only HA is soluble in the organic layer, and its concentration is [HA $]_{\text {org }}$; while HA and $\mathrm{A}^{-}$exist in the aqueous layer, and their concentrations are $[\mathrm{HA}]_{\mathrm{aq}}$ and $\left[\mathrm{A}^{-}\right]_{\mathrm{aq}}$, respectively. The distribution coefficient is defined as $\mathrm{K}_{\mathrm{d}}=[\mathrm{HA}]_{\text {org }} /[\mathrm{HA}]_{\mathrm{aq}}$.

In an extraction experiment, take $10-\mathrm{mL}$ of an aqueous solution containing 3.5 mM HA at pH 5.0 ; extract it with $15-\mathrm{mL}$ of an organic solvent. Separate the mixed solution into aqueous and organic layers. Take 1.0 mL of the aqueous layer; put it into a $1.0-\mathrm{cm}$ (path length) cuvet; measure the absorbances at 400 nm and 450 nm ; the observed absorbances are 0.30 and 0.62 , respectively. Given the following information: molar absorptivity $\varepsilon\left(\right.$ in $\left.\mathrm{M}^{-1} . \mathrm{cm}^{-1}\right): \varepsilon_{400}(\mathrm{HA})=2000, \varepsilon_{400}\left(\mathrm{~A}^{-}\right)=250, \varepsilon_{450}(\mathrm{HA})=200$, $\varepsilon_{450}\left(\mathrm{~A}^{-}\right)=1500$. Answer the following questions.
(A) Find $[\mathrm{HA}]_{\mathrm{aq}}$ and $\left[\mathrm{A}^{-}\right]_{\mathrm{aq}}$ in the aqueous layer. $4 \%$
(B) Find $[\mathrm{HA}]_{\text {org }}$ in the organic layer. $2 \%$
(C) Find the acid dissociation constant $\mathrm{K}_{\mathrm{a}}$. $2 \%$
(D) Find the distribution coefficient $K_{d}$. $2 \%$
26. Explain the following terms. 2 points for each term.
(A) mean free path
(B) isotonic solutions
(C) cathodic protection
(D) ion-selective electrode
(E) amphoteric substance

