Taipei Municipal YangMing High School

Teacher Recruitment at 2024

Paper and Pencil Test

Subject: Chemistry

This test consists of two parts: part I, single-choice questions (40 points); part II, shortanswer questions (60 points).

Part I. Single-choice questions (1-20), 2 points for each question.

- 1. For $[H^+] = (8.0 \pm 0.4) \times 10^{-5}$ M, pH = 4.10 ± s. s = ? (A) 0.01 (B) 0.02 (C) 0.03 (D) 0.04
- 2. What is the volume (in mL) of 1.0 M NaOH(aq) that must be added to 1.0 M, 60 mL HA(aq) to make a buffer solution with pH = 6.0? pK_a = 5.7 for HA
 (A) 20 (B) 30 (C) 40 (D) 50
- 3. Ionization of water is an endothermic process with pK_w = 14.0 at 25°C. For pure water at 37°C, which of the following relations is correct?
 (A) pK_w > 14.0 (B) pH = 7.0 (C) pOH > 7.0 (D) pK_w = 2 pH
- 4. For two monoprotic acids (HA, HB) and their conjugate bases (A⁻, B⁻), the following relations are known: HA + B⁻ ⇐ A⁻ + HB, K > 1 and pK_b(A⁻) < 7.0. Which of the following order of K's is correct?
 - (A) $K_b(B^-) > K_a(HB) > K_a(HA) > K_b(A^-)$
 - $(B) \quad K_b(A^-) > K_b(B^-) > K_a(HA) > K_a(HB)$
 - (C) $K_b(B^-) \ge K_b(A^-) \ge K_a(HA) \ge K_a(HB)$
 - (D) $K_b(B^-) > K_a(HA) > K_b(A^-) > K_a(HB)$
- 5. The solubility of Ag₂CrO₄(s) in water is 10000 times that of Ag₂CrO₄(s) in 0.020 M AgNO₃(aq). What is the K_{sp} for Ag₂CrO₄?
 (A) 2 × 10⁻⁸ (B) 4 × 10⁻¹⁰ (C) 1 × 10⁻¹² (D) 4 × 10⁻¹²
- 6. Consider the concentration cell: Cu | Cu²⁺ (5.0 × 10⁻⁵ M) || Cu²⁺ (0.50 M) | Cu. What is the cell potential (in volt) at 25°C?
 (A) 0.06 (B) 0.12 (C) 0.18 (D) 0.24

- 7. For the condensation of water vapor at 1 atm and 25°C (H₂O(g) → H₂O(l)), which of the following relations is correct?
 (A) ΔG < 0 (B) w < 0 (C) ΔS > 0 (D) q > 0
- 8. For an isothermal and reversible compression of an ideal gas, which of the following relations is correct?
 (A) ΔH < 0 (B) ΔG = 0 (C) q > 0 (D) ΔS < 0
- 9. Adding CH₄(g) into a fixed-volume flask containing O₂(g) until the pressure is tripled, how many times its density will be? (d_{final}/d_{initial} = ?)
 (A) 2 (B) 3 (C) 4 (D) 6
- 10. Which of the following elements has the lowest second ionization energy?(A) B (B) C (C) N (D) O
- 11. For Ag^+ ion in its ground state, what is the number of electrons that have $m_l = 0$ and $m_s = -1/2$? (Z = 47 for Ag) (A) 9 (B) 10 (C) 18 (D) 20
- 12. Which of the following compounds would have the largest melting point? (A) NaCl (B) KCl (C) MgO (D) MgCl₂
- 13. One mole of an ideal gas (C_v = 20 J·K⁻¹·mol⁻¹), initially at 1.0 atm and 300 K, absorbs 100 J of heat and performs 500 J of work in a certain process. What is the final temperature (in K) of the gas?
 (A) 280 (B) 290 (C) 300 (D) 320
- 14. Decomposition of 2.76 g M₂CO₃ yields 1.88 g M₂O. What is the atomic mass of M?(A) 9 (B) 23 (C) 39 (D) 85
- 15. For a triprotic acid H₃A with pK₁ = 3.0, pK₂ = 6.0 and pK₃ = 9.0, which of the following relations is correct?
 (A) [H₃A] = [A³⁻] at pH = 7.0
 (B) [HA²⁻]/[A³⁻] = 10 at pH 7.0
 (C) [H₂A⁻] > [HA²⁻] at pH 6.5
 (D) [H₃A] > [HA²⁻] at pH 5.0

- 16. Which of the following statements is correct?
 - (A) a saturated solution contains a high concentration of solute.
 - (B) the solubility of solids always increases with temperature.
 - (C) a saturated solution involves a dynamic equilibrium between the solid and its solution.
 - (D) a supersaturated solution involves a dynamic equilibrium between the solid and its solution.
- 17. Which operation will increase the quantity of product for the exothermic reaction: $2SO_2(g) + O_2(g) \implies 2SO_3(g)$
 - (A) a decrease in volume of container
 - (B) an increase in temperature
 - (C) increasing P by adding some argon
 - (D) adding a catalyst
- 18. Consider the equilibrium: PCl₅(g) → PCl₃(g) + Cl₂(g), K_c = 0.025 at 400 K. If 0.5 mol of PCl₅ is placed in a 1.0 L container at 400 K and is allowed to reach equilibrium, what is the total pressure (in atm) of the gases?
 (A) 5 (B) 10 (C) 15 (D) 20
- 19. For an ideal gas, which of the following sets of variables has a linear relationship? (A) P vs. 1/V (B) V vs. T (C) PV vs. T (D) P/T vs. density
- 20. It took 2 min for 0.20 L of H₂ to effuse through a pin hole. How long will it take (in min) for 0.10 L of O₂ to effuse under identical conditions?
 (A) 2 (B) 4 (C) 8 (D) 16

Part II. Short-answer questions (21-26); 10 points for each question.

Question 26 must be answered in English; other questions can be answered in Chinese.

21. A certain liquid (X) has a normal boiling point of 353 K. The densities (in g/L) of the vapor X in equilibrium with its liquid at 300 K and 353 K are 0.50 and 2.7, respectively. Assume the vapor behaves ideally, answer the following questions.

3%

- (A) Find the molar mass of X.
- (B) Find the vapor pressure of liquid X at 300 K. 2%
- (C) If the saturated vapor of X at 353 K in a 2.0 L glass flask is cooled to 300 K, what is the mass of X that the will be condensed? 2%
- (D) If X is a hydrocarbon containing 92.3% carbon, what are the empirical formula and molecular formula of X? 3%

22. A battery is constructed from two half cells: $Zn|Zn^{2+}(1.0 \text{ M})$ and $Mn|Mn^{2+}(1.0 \text{ M})$; the volume of each electrolyte solution is 300 mL. The battery is allowed to discharge at a constant current of 9.65 amperes. Given that: $F = 96500 \text{ C} \cdot \text{mol}^{-1}$; $E^{\circ} = -0.76 \text{ V}$ for Zn^{2+}/Zn and -1.18 V for Mn^{2+}/Mn . Answer the following questions.

(A) Indicate the anode, cathode, and direction of electron flow of the cell.	3%
(B) Calculate the standard cell potential.	2%
(C) The equilibrium constant of the cell reaction is K; $\log K = ?$	2%
(D) Find [Zn ²⁺] after 10 min. of discharging.	3%

23. One mole of an ideal gas ($C_v = 2R$), initially at X, undergoes three reversible steps of a cycle as shown below:

(1) isothermal; (2) isochoric (fixed V); (3) adiabatic

Answer the following questions. $(\ln 3 = 1.1)$

- (A) Find the temperature (T) at state Z.2%(B) Find the work done (w) for step (3).2%(C) Find the change in enthalpy (Δ H) for step (2).3%
- (D) Find the heat (q) involved in a cycle. 3%

24. After people take the medicine X, it can be absorbed into the body through pathway $A \rightarrow B$ and enter the blood. Medicine in the blood can reduce its concentration through decomposition (B \rightarrow C) or excretion (B \rightarrow D), as shown in the figure below:

Assume that the process $A \rightarrow B$ is much faster than those of $B \rightarrow C$ and $B \rightarrow D$. Therefore, each time a medicine with a dose of $[X]_o$ is taken, it can be regarded as immediately producing a concentration of $[X]_b$ (= 0.020 mM) of X in the blood. Assume that $B \rightarrow C$ and $B \rightarrow D$ are both first-order processes, and their rate constants are k_1 (= 0.075 h⁻¹) and k_2 (= 0.025 h⁻¹), respectively. If a person takes the same dose ($[X]_o$) of the medicine every t hour, answer the following questions.

- (A) Just after taking the medicine for the nth time, its concentration in the blood is equal to [P]_n. Express [P]_n as a function of [X]_b, k₁, k₂ and t.
- (B) Continue to take the medicine every 6 hours for a long period of time (n → ∞), calculate [P]∞ (in mM)?
 3%
- (C) Find the half-life of the medicine in the blood. 2%
- (D) What proportion of the decrease in medicine concentration in the blood is caused by decomposition? 2%

25. Extraction and spectroscopic methods can be used to determine the dissociation constant (K_a) of a monoprotic organic acid (HA) and its distribution coefficient (K_d) between the organic phase and the aqueous phase. When extracting organic acids, it is assumed that only HA is soluble in the organic layer, and its concentration is [HA]_{org}; while HA and A⁻ exist in the aqueous layer, and their concentrations are [HA]_{aq} and [A⁻]_{aq}, respectively. The distribution coefficient is defined as $K_d = [HA]_{org}/[HA]_{aq}$.

In an extraction experiment, take 10-mL of an aqueous solution containing 3.5 mM HA at pH 5.0; extract it with 15-mL of an organic solvent. Separate the mixed solution into aqueous and organic layers. Take 1.0 mL of the aqueous layer; put it into a 1.0-cm (path length) cuvet; measure the absorbances at 400 nm and 450 nm; the observed absorbances are 0.30 and 0.62, respectively. Given the following information: molar absorptivity ε (in M⁻¹.cm⁻¹): ε_{400} (HA) = 2000, ε_{400} (A⁻) = 250, ε_{450} (HA) = 200, ε_{450} (A⁻) = 1500. Answer the following questions.

(A)	Find $[HA]_{aq}$ and $[A^-]_{aq}$ in the aqueous layer.	4%
(B)	Find [HA] _{org} in the organic layer.	2%
(C)	Find the acid dissociation constant Ka.	2%
(D)	Find the distribution coefficient K _d .	2%

26. Explain the following terms. 2 points for each term.

(A) mean free path

(B) isotonic solutions

(C) cathodic protection

(D) ion-selective electrode

(E) amphoteric substance