臺北市立陽明高級中學 111 學年度第1次正式教師甄選高中數學科試題

Taipei Municipal Yang Ming High School Teacher Recruitment Exam

[Calculator is allowed]

1. Let f(x) = |2x + 3| - 5 write a function g whose graph is horizontal shrink of the graph of f by a factor of $\frac{1}{3}$.

- 2. If f(6) = 30, and $f'(x) = \frac{x^2}{x+3}$. Estimate f(6.02) using the line tangent to f at x = 6.
- 3. Find $\left[\left(\frac{-\sqrt{2}}{2}\right) + i\left(\frac{\sqrt{2}}{2}\right)\right]^8$ using De Moivre's theorem.
- 4. At a yearly rate of 5% compounded continuously, how long does it take (to the nearest year) for an investment to triple?
- 5. Let *R* be the region in the first quadrant bounded by the graph of $y = 2\sqrt{x}$, the horizontal line y = 6, and the y-axis. (1) Find the area of R.
 - (2) Find the volume of the solid generated when *R* is rotated about the horizontal line y = 7.
- 6. An advertising agency is designing a 40 feet long by 12 feet high billboard. The billboard is mounted on a wall with the bottom of the billboard 30 feet above the ground. A man, whose eyes are 6 feet above the ground, stands 150 feet from the wall. Find the angle θ (to the nearest degree) between the man's line of sight to the top of the billboard and his line of sight to the bottom of the billboard. Refer to the figure.

- 7. Find the equilibrium price and then find the consumers' and producers' surplus at the equilibrium price level, if p = D(x) = 20 0.05x and $p = S(x) = 2 + 0.0002x^2$
- 8. A blood test indicates the presence of Amyotrophic lateral sclerosis (ALS) 95% of the time when ALS is actually present. The same test indicates the presence of ALS 0.5% of the time when the disease is not actually present. One percent of the population actually has ALS. Calculate the probability that a person actually has ALS given that the test indicates the presence of ALS. Round your answer to the nearest thousandth.
- 9. Hot water is dripping through a coffeemaker, filling a large cup with coffee. The amount of coffee in the cup at time, $0 \le t \le 6$, is given by a differentiable function C, where t is measured in minutes. Selected values of C(t), measured in ounces, are given in the table below.

t (minuets)	0	1	2	3	4	5	6
C(t) (ounces)	0	5.3	8.8	11.2	12.8	13.8	14.5

- (1) Use the data in the table to approximate C'(4.5), and indicate units of measure.
- (2) Use a midpoint sum with three subintervals of equal length indicated by the data in the table to approximate the value of

 $\frac{1}{6}\int_0^6 C(t)dt$. Using correct units, explain the meaning of $\frac{1}{6}\int_0^6 C(t)dt$ in the context of the problem.

10. The notation for compass direction is shown below as an example.

The course for a boat race starts at point A and proceeds in the direction S 52° W to point B, then in the direction S 40° E to point C, and finally back to A. Point C lies 8 km directly south of point A. Approximate the total distance of the race course. Round the answer to the nearest hundredth.

- **11.** The concentration of a medication injected into the bloodstream drops at a rate proportional to the existing concentration. If the factor of proportionality is 30% per hour, in how many hours will the concentration be one-tenth of the initial concentration? Round the answer to the nearest hundredth.
- 12. Your student claims that it is possible for a rational equation of the form

 $\frac{x-a}{b} = \frac{x-c}{d}$, where $b \neq 0$ and $d \neq 0$, to have extraneous solutions. Is your student correct? How would you explain to the student?

13. Consider the infinite geometric series $\frac{1}{5} + \frac{1}{10} + \frac{1}{20} + \frac{1}{40} + \frac{1}{80} + \cdots$. How do you graphically and algebraically explain to students what happens to S_n as n increases?